Nonlinear solutions for χ(2) frequency combs in optical microresonators
نویسندگان
چکیده
منابع مشابه
Frequency combs and platicons in optical microresonators with normal GVD.
We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation ...
متن کاملMid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators
The mid-infrared spectral range (λ~2-20 μm) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs--broadband optical sources consisting of equally spaced and mutually coherent sharp lines--are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency ...
متن کاملColloquium: Femtosecond optical frequency combs
Recently there has been a remarkable synergy between the technologies of precision laser stabilization and mode-locked ultrafast lasers. This has resulted in control of the frequency spectrum produced by mode-locked lasers, which consists of a regular comb of sharp lines. Thus such a controlled mode-locked laser is a ‘‘femtosecond optical frequency comb generator.’’ For a sufficiently broad com...
متن کاملOptical Frequency Combs: From Frequency Metrology to Optical Phase Control
The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible and near-infrared frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of a “femtosecond optical-frequency comb generator” with a regular comb of sharp lines with well-defined f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2020
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.101.023815